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A method is described which provides phase estimates for structure factors. The data required are the 
moduli of some or all of the structure factors and phases for a sub-set of them. The Fourier components 
corresponding to a real square root of the electron density are estimated by fitting their self convolution 
to the available data by least squares. The structure factors are modified to improve resolution and 
maintain non-negativity of the electron density. Suitable weighting of the observations assists conver- 
gence and estimates of error for the electron density map are provided. The results of tests of the method 
are described. 

1. Introduction 

Most crystal structures can be made to yield diffracted 
beams of observable intensity for reflexions from sets 
of planes with spacings comparable with interatomic 
distances. It is much less often true that the application 
of direct methods, or of methods related to that of 
multiple isomorphous replacement, provides phase es- 
timates for the majority of the structure factors which 
can be observed. Commonly the phase estimates which 
can be obtained are relatively few. For protein struc- 
tures they often correspond to reflexions of large spac- 
ing only. Hence there is a need for methods of analysis 
which can extend phase sets to improve resolution. 
For protein structures in particular there is a need to 
do this in such a way that the accuracy of the resulting 
electron density map can be estimated reliably. 

Biraud (1969) has described a method of improving 
resolution which is applicable to a real non-negative 
function. This possesses a real (but possibly negative) 
square root. The Fourier transform of the square root 
is Hermitian and can be convoluted with itself to fit 
the Fourier transform of the original function. W e  
have used least squares to fit the self-convolute of the 
Fourier components of a square-root function to the 
amplitudes and phase estimates for the structure fac- 
tors. The transform of the self-convolute is an electron- 
density estimate which agrees with the experimental 
data and is non-negative. It can, in general, be made 
to enhance resolution. 

The starting approximation is obtained by assuming 
that the electron density and its square root resemble 
each other. Hence the initial Fourier component esti- 
mates for the square root are taken to be the same as 
those for the structure itself, apart from a Gaussian 
correction for change of shape of the peaks. This start- 
ing approximation is based on the relationship of 
Sayre (1952). The least-squares fitting process does not 
require that the electron density resemble its square 
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root, however, and there is no reason why it should 
not yield an accurate fit to a density function with 
peaks of varying heights. This makes our method 
attractive for application to protein structures with 
heavy atoms, variations of vibrational amplitude from 
one atom to the next, and regions of disordered solvent. 
So far as our present work has gone, the less restrictive 
condition of non-negativity (rather than resemblance 
to the square) has been adequate to define the electron 
density. 

The number of structure factors is always finite. We 
must therefore use a finite number of terms in the 
series for the square-root function. Boas & Kac (1945) 
have found limits on the amplitudes of a one-dimen- 
sional Fourier transform which can represent a non- 
negative function that tends to zero as the argument 
tends to infinity. Davies (1974) has extended this 
theory to cover periodic functions in three dimensions. 
A necessary (but not sufficient) condition on the ratio 
[F(h)I/IF(O)I is obtained. The condition is IF(h)[< 
~IF(0)I{2 cos [rc/([ro/lhl]+2)]} n(h) where ro is the limit- 
ing value of Ihl for non-zero IF(h)l, [r0/Ihl] is the largest 
integer not exceeding r0/Ihl, and n(h) is the number of 
non-zero indices in h. This condition turns out to be 
less stringent than the condition we have applied to 
ensure that the truncation error of our approximation 
shall be small. The truncation condition is that IF0(h)l 
does not exceed one per cent of IF0(0)l when [hi is so 
large that Fc(h) must be zero, and this condition has 
been established empirically by some of the test calcu- 
lations which we describe in § 4. Notation is described 
in the Appendix. 

2. Method 

We define P as the set of h - ( h , k , l )  for which both 
modulus and phase are given. F0(h) is the observed 
(generally complex) structure factor, which is modified 
by a Gaussian factor to ensure that the truncation 
condition is satisfied. ~00(h)is its phase angle. C(h') is 
the component of order h' in the Fourier series for the 
square root of the electron density, and we calculate 
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Fc(h~ as 

F~(h)= ~ CCn'). C(h-h') 
C-se t  

where the C-set is the set of h' for which C(h ')~ 0. If 
the phase angle of Fc(h) is ~c0a) then we can calculate 
the deviation of F~(h) from Fo(h) in the direction paral- 
lel to FoOl) as 

A ,,(h)=lfo(h)l-IF~(h)l cos [~o(h)-~ocfh)]. 

Similarly the deviation of F¢(h) from FoOa) in the direc- 
tion perpendicular to this is 

31(h)= IFc(h)l sin [(po0a)- ~0~(h)]. 

We minimize, by least-squares, a function which con- 
tains one term for each member of the P-set, of the 
form 

w ,, 0a)A~ Cn) + w±(h)A2, (h). 

In general, the weight w u will be larger than w±, 
because of the precision of the radial component of 
FoOa) and the relative uncertainty of the cross-radial 
component. This choice of observations ensures that 
the covariance between A, and A± is zero, which is 
necessary for the validity of the least-squares method 
with simple weights. 

We define M as the set of h for which the modulus, 
but not the phase, is given. For each member of the 
M-set we define 

AM(h) = Ifb(h)l - Ifc(h)l . 

Each member of the M-set makes a contribution to the 
minimization function equal to wM(h)A~(h). Fb(h) is 
the centroid of the probability distribution of the un- 
known true value of the structure factor, Ft(h), based 
on knowledge of IFoOa)l and Fc(h). 

The contributions to the variances of A t~, A± and 
AM, and hence the appropriate w~, Wx and wM, are 
discussed in § 3. 

The parameters in the calculation define the C(h'). 
It would be possible to use the real and imaginary 
parts of each C01') as parameters, but we have chosen 
to use IC(h')l and a0a'), the phase angle of C(h'). This 
has the disadvantage that c~0a') is indeterminate when 
I C(h')l is zero, but that has not presented any problems 
except the need for caution in setting up a starting 
model. The Fc(h) are non-linear functions of IC(h')l 
and ~(h'), and the least-squares equations are linea- 
rized in the usual way (see for example Rollett, 1965, 
pp. 32-35). The derivatives required are: 

For h in the P-set 

&1,(h) 

OICCn')l 

OA , (h) 
Oe(h') 

. . . .  2 ~ IC(h-h*)l  cos A(hh*), 
h *  ~ S h '  

- + 21COl')l 

&(h*) 
× ~ O~(h') h * ~ S h '  

- - - - I C 0 a - h * ) l  sin A(hh*), 

OIC(h')l 

OA .Ca) 
&(h') 

- - 2  ~ ICCn-h*)l sin A(hh*),  
h * ~ S h '  

- 21C(h')l 

&0a*) 
x h*~Sh' ~ &(h')  IC(h-h*)] co~A(hh*); 

and for h in the M-set 

&IM(h) 
-- 2 ~ IC0a-h*)l  cosB0ah*) ,  

~lC(h')l h * ~ S h '  

&JM01) 
- + 21C(h')l h~h'lC(h--h*)l,  Ts sin B(hh*); &~01'~- 

where 

A(hh*) = ~01") + ~0a - h*) - eo0a), 

B0ah*) = ~Ca*) + ~ ( h -  h*) - ~0c(h), 

and h*~Sh' means that h* is one of the reciprocal vec- 
tors related to h' by symmetry. 

The weights vary from cycle to cycle. They are 
regarded as a means of choosing the most appropriate 
minimization function for the cycle, rather than as 
variables in this function. Thus we do not differentiate 
the weights in forming the normal equations. The 
number of h in the C-set will usually be comparable 
with the number in the P-set plus the M-set. For a 
typical three-dimensional calculation on a large struc- 
ture the number of parameters is nearly twice the 
number of h' in the C set [some of the CW) may have 
phases restricted by symmetry] and is inconveniently 
large. We have adopted the following procedure to 
avoid severe data handling difficulties: 

(a) Refine [C(h')[ and c~(h') for all k'  and l' corres- 
ponding to a particular value of h', keeping the param- 
eters for other h' fixed. 

(b) Advance h' and repeat (a) until all h' have been 
dealt with, but base the calculation for each value of 
h' on the same starting parameters. 

(c) Create a vector of shifts by adding together all 
the shifts produced by operations (a) and (b), and 
search along the direction of this vector in parameter 
space for a minimum of the minimization function. Use 
this minimum as the set of starting parameters for 
operation (d) 

(d) Repeat operations (a) to (c), refining parameters 
for particular values of k' at each stage. 

(e) Repeat operations (a) to (c), refining parameters 
for particular values of l '  at each stage. 

It might be supposed that the linear search procedure 
of operation (c) would be time consuming, but this is 
not in fact a dominant part of the time required 
for the program because no derivatives of the minimi- 
zation function are needed except that at the start 
point, and this can be calculated easily from the deriv- 
atives in the normal equations. A search procedure of 
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Bard (1970) was used. In this a parabola is fitted to the 
value and gradient of the function at the start of the 
step and the value only at one other point. It was found 
to require no more than three function evalutions per 
step in most cases. 

It is not easy to eastablish the effectiveness of this 
'alternating-directions' algorithm in a rigorous way, 
but it has been found to converge quite well, and faster 
than an algorithm in which steps (d) and (e) are 
omitted. 

The program we have used was written in Fortran 
for the ICL 1906A computer, and was designed for 
orthorhombic symmetry only. Care was taken to min- 
imize the time required to run it by removing all pos- 
sible operations from the innermost loops. Details of 
the programming techniques are given by Davies 
(1974), Chap. 5. 

3. Error analysis 

We have wished to carry out the calculations in such 
a way as to produce convergence as rapidly as possible 
towards a minimum of the minimization function 
which corresponds to physical reality. We have there- 
fore taken into account in our weighting system not 
only errors of the data, but also the contributions to 
A H, A± and AM from the errors of the model used to fit 
the data. 

Our guiding principle has been to calculate the sum 
of the contributions to the variance for each A value 
and to use its reciprocal as a weight. For the P-set the 
contributions are, for A ~: 

(a) The variance of Fo(h) in the radial direction due 
to experimental error; we have assumed that this can 
be provided with the data. 

(b) The truncation error of Fc(h) due to the finite 
size of the C-set. This is discussed below. 

For A±, the contributions are the same, except that 
the variance of Fo(h) is that in the cross-radial direction 
due to the error in determining the phase angle rpo(h). 
We have assumed that the cross-radial variance of 
Fo(h) can be provided with the data. 

For the M-set, the contributions are: 
(a) The variance of [Fo(h)] due to experimental error. 
(b) The truncation error of If~(h)l. 
(e) The variance of IFb(h)l as an estimate of the 

component of Ft(h) in the direction defined by ~0c(h), 
due to the uncertainty of ~0~(h). 

At any stage we have taken the C-set to consist of 
all reciprocal points in a sphere bounded by a value 
of [hi which is small enough to ensure that the number 
of parameters is not greater than the number of obser- 
vations. Outside a radius twice that of the C-set the 
value of Igxh)l must be zero and the magnitude of the 
truncation error is therefore equal to IFo(h)l which can 
be estimated from the Gaussian factor applied to the 
observations and the requirement that ([EI 2) = 1 at all 
]hi. In order to estimate the truncation error at a 
radius at which F~ is not zero we use a technique in 

which we assume that the truncation error is a complex 
random variable isotropically distributed about Fc(h) 
and which is not correlated with the experimental 
errors in Fo(h). An estimate of the truncation error is 
then given by its variance, which is found as follows. 
When a C-set is fitted to a P-set alone, and the moduli 
and phases for the P-set are exactly those for a non- 
negative electron density, the errors of fit are entirely 
due to truncation. We have found, in such cases, that 
it is satisfactory to take the natural logarithm of the 
truncation error to be a linear function of Ihl 2. We have 
estimated this function by fitting a straight line to the 
natural logarithm of the r.m.s, error for groups of P-set 
data points of various Ihl values and also for the point 
at the limit of the non-zero Ft. It has also been satis- 
factory to estimate the truncation error for lhl values 
corresponding to the M-set by interpolation from the 
straight line. Our normal procedure has been to begin 
by fitting the P-set alone. At each cycle the truncation 
variance has been estimated from a straight-line plot. 
When convergence has been attained we have added 
the M-set to the data, extended the C-set to reduce the 
truncation error, and continued to estimate its variance 
from the fit to the P-set and from the point at which 
Ifc(h)l falls to zero. 

The variance of ]Fb(h)] due to lack of knowledge of 
~0t(h) in the M-set is derived by a Bayesian argument. 
The distribution of Fc(h) about the true Ft(h) is taken 
to be normal, bivariate for F(h) with general phase, 
and univariate for F(h) with phase restricted by sym- 
metry. Bayes's theorem [see for example Lindley (1965)] 
is then used to combine this with the information 
available from knowledge of Igo(h)l. If we ignore for 
this purpose the uncertainty in IFo(h)] then the true 
Ft(h) has an a priori distribution [i.e. a distribution 
before we take into account knowledge of Fc(h)] which 
is either uniform on a circle centred at the origin, or 
concentrated at two points in the case of restricted 
phase. By Bayes's theorem 

p[F,(h)[F~(h)]  = P[F:(h)IF'(h)]:-P.-[-F~(-h)]- , 

f f pErxh)ie'(h)l • pE ,(h)laA 

where the integration is over the complex plane. 
p[ft(h)lF~(h)] means the probability density, of Ft(h) 
given the value of F~(h), and so on. The centroid of 
the distribution and the variance in the direction de- 
fined by the phase of Fc(h) can be found analytically. 
We write 

71(h) = IF~(h)l IFo(h)l/a~(h) 

where a2(h) is the estimated variance of the distribution 
of p[Fc(h)lFt(h)], and 

,u,(h) = &[y,(h)]/So[~,, (h ) ] ,  

where I0 and /1  are the zeroth and first-order Bessel 
functions of imaginary argument. For reflexions of 

A C 3 2 A  - 2* 
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general phase we then get the centroid 

IFo(h)l--/h(h)lFo(h)l 
and the variance 

a~(h) = IFo0a)12{ 1 - , t / l ( h ) / ? ' l ( h ) -  [ i l l ( h ) ] 2 }  . 

For reflexions of restricted phase we write 

/z2(h) = tanh [?~(h)]. 

The Bayes theorem integration reduces to a summation 
over the two permitted values of Ft(h) and we get 

Fb(h)=a2(h)lFo(h)l exp [i~c(h)] 

a~(h) = IFo(h)l 2{ 1 - []/2(h)] 2}. 

A problem is to estimate a~(h) correctly. If the distri- 
bution of Ft(h) about F~(h) could be assumed to be 
isotropic we could take this as 

a~(h) = ( [ I f X h ) l -  Ifo(h)l]2)M. 
Refinement of the parameters to fit the moduli for the 
M-set, but not the phases, destroys this isotropy how- 
ever, and we have found empirically that it is satis- 
factory to use, for both types of reflexion: 

a2a(h) = 4([IF~(h)l- IFo(h)l]2)M. 

At early stages a2(h) is large and cuts down the effect 
of terms with uncertain phases. Later a~(h) is small 
and we use essentially minimum-variance weights. 
Small errors in the estimate of a2(h) are unlikely to 
affect the weights seriously because/q and/z2 become 
slowly varying functions for reasonably small tra values. 

Provided that the least-squares refinement is carried 
out with proper weighting, we can use the knowledge 
of the errors in the Fc(h) that it provides to estimate 
the variance of the electron density obtained from 
them. An estimate can be made of the mean-square 
difference between the electron density based on Ft(h) 
and that based on F~(h) [rather than the modulus of 
FoOl) and the phase of Fc(h)]. This is: 

1 
<(A~)2>= ff~- {[F~(0)- Fo(0)] 2 + 2 ~ [IFc(h)l 2 

h ' : # O  

where 

- 2K(h)lFc(h)l lEo(h)[ + IFo(h)lZ]}, 

K00=cos (fcCa)-eo00), nee, 
=/z1(h), hEM with general phase, 

=/z2(h), hEM with restricted phase 

and the Fc quantities are those obtained at convergence 
of the least-squares fitting process. The derivations of 
the K(h) expressions depend on the assumption of 
isotropy of the distribution of F¢(h) about F~(h), but 
it is unlikely that failure of this assumption would 
alter the estimate of ((AQ) 2) by much. At the end of the 
refinement the K(h) values are likely to be near unity 
and slowly varying with respect to Yl(h). 

If we let the Fo data correspond to point atoms 
each with a vibration parameter fl, then the truncation 
condition mentioned at the end of§ 2 gives exp (-fllh] 2) 
_< 0-01 at the limit of non-zero F~(h). The error due to 
the finiteness of the series should then be small. We 
can therefore regard this estimate as a realistic error 
estimate for the electron density map consisting of 
point atoms with vibration ft. If however the F~(h) are 
sharpened (i.e. the effective value of fl is reduced) after 
the fitting process is complete and before the map 
is calculated, then there may be an appreciable finite 
series error. We comment further on this in § 4. 

4. Tests of the method 

We have applied the method described in §§ 2 and 3 to 
sets of Fo data for structures of symmetry P212~21. 
These sets correspond to hypothetical structures, gen- 
erated by a program written by D. Sayre. That program 
selected coordinates for atoms of equal scattering 
power as the values of pseudo-random numbers uni- 
formly distributed over ranges corresponding to the 
asymmetric unit. Atomic positions were rejected if 
they were (a) less than 1.3 A, from any previous position 
or (b) between 1.6 and 2.5 A, from a previous position. 
Three structures, one with two atoms, one with six 
atoms, and one with 16 atoms in the asymmetric unit, 
were generated and Eo values were produced for all h 
of spacing greater than 1 A, in each case. 

The P-set was chosen in each case as the set of h of 
spacing d(h) greater than 2.0 A. The M-set was chosen 
so that 2.0 A > d(h) >dM and the C-set with d(h) > do 
Values of dM and dc are given in Tables 1 to 3 and vary 
with the cycle number in most calculations. In order 
to investigate the effects of truncation errors, we have 
worked with 

Fo(h) =const. exp (-fllhlZ). Eo(h). 

The values of fl are also given in the tables. For such 
a set of Fo(h), the analysis of Sayre (1952) can be 
modified to show that C(h)= 0(h). Fo(h) where 0(h)= 
const, exp (-fllhlZ). We have generated our starting 
approximations for C(h)(hEP) from this rule, with 
the constant chosen so that Fc(0)=F o(0). When neces- 
sary we have generated starting approximations for 
C(h) (hEM) by 

C(h) =const. O(h)lFo(h)l. exp [i~cfh)], 

where ~c(h) is the phase of the M-set term taken from 
the previous cycle. We define 

j =  the number of cycles since 
the start of the run 

(IAfpl)= ( l~ (h ) -oc (h ) l ) in  degrees 

a(F) = (IF,(h)-  F~(h)12) m 

a([r[)= <llF,(h)l- IF~(h)[12> '/z 
R= ~ IIF/h)l-IFc(h)ll/ ~, IF,(h)l. 
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The summat ions  are carried out separately for the P- 
and M-sets. 

Table 1 shows the results of  two runs on the two- 
a tom structure. This had a = 5 . 0 ,  b=6 .0 ,  c = 7 . 0  A. 
The P-set consisted of  22 independent  reflexions and 
the M-set of  a further 124. Uni t  weights w, (h)=  wx(h) 
= wM(h)= 1 were used throughout.  In run 1 the value 
of fl is just  sufficient to satisfy the necessary condit ion 
for non-negativity but not sufficient to ensure a small 
t runcat ion error. The final value of ae(IFI)=0"2351 
compares poorly with ([FolZSffz~0.8, and for the M- 
set er=0.1713 compares poorly with (1Fo12)~2~0.4. 
For run 2 each fl value was chosen so that exp ( -  4fllh[ z) 
_ 0.01 for the m a x i m u m  Ihl of  the C-set. The value of  
ere(IFI)=0.0117 compares well with (IFolZ)ff2~0.7 and 
aM(IFI)=0.0118 also compares well with (IFolZ)~ 
0.1. These two runs demonstrate the necessity of  en- 
suring a small  t runcat ion error. 

Table 2 shows the results of  two runs with the six- 
a tom structure. This had a =  6.30, b =7.56,  c =  8.82 A. 
The P-set consisted of  42 independent  reflexions and 
the M-set (to 1-2 A spacing) of a further 120. In run 3 
unit  weights were used throughout,  as for the two-atom 
structure. In run 4 unit  weights were used for the P-set 
but for the M-set weights included an allowance for 
t runcat ion (given by the variance of  Fo where Fc became 
zero) and also the Bayesian contr ibut ion to the vari- 
ance, with era(h ) estimated by ½(]Fc(h)-Ft(h)]) 2. Run  
3 was repeated with unit  weights and f l=4 .6  through- 
out. This reduced (IA~01)M to 26 °, which still compares 
poorly with the value of 11.9 ° for run 4. Thus these 

runs show clearly the need for proper weighting to 
cause the refinement to reach a true rather than a false 
min imum.  For  the final cycle of  run 4, Re=0 .0082  
and RM=0"075, indicat ing a very satisfactory quali ty 
of  fit. It is also noticeable that the results in run 4 im- 
prove considerably when dM becomes < 1.4 A. 

Table 3 shows the results of  two runs with the 16-atom 
structure. This had a=9 .08 ,  b=10.90 ,  c=12-72 A. 
The P-set consisted of  116 independent  reflexions and 
the M-set (to a spacing of 1.4 A) a further 184. In run 
5 the weights took account of  t r u n c a t i o n  and the 
Bayesian term, and the results show the same features 
as those of  run 4. A repeat of  this run (not tabulated) 
was made in which dM was reduced to 1.4 and dc to 
1-6 A in one step after cycle 7. The same m i n i m u m  
was reached in 28 instead of 48 cycles. Hence it is not  
necessary to add the M-set in several stages, and may 
be inefficient. For  run 6, the data were altered by the 
addit ion of artificially generated errors. The IFo(h)l 
were normal ly  distributed about  I F,(h)l with a s tandard 
deviation of 5 % of IF,(h)l for both P- and M-sets. 
The ~0o(h) for the P-set were normal ly  distributed about  
the (pt(h) with a s tandard deviation of  15 °. It can be 
seen from the table that  the quali ty of the results was 
not spoilt by the introduct ion of these errors. In fact, 
for RM there was an improvement  as a result of  some 
experiments carried out to improve the est imation of  
t runcation error. For  the Fo(h) data without errors, the 
value of In (IFo(h)-Fc(h)[)  2 was found for each of  a 
series of  annular  regions in the P-set. Various functions 
(a + blhl, a + blhl + clhl z, a + blhl z, a + blhl + clhl z + dlhl 3, 

Run j 
1 5 
1 12 
1 17 
2 7 
2 14 
2 18 

Table 1. Results o f  two runs with the two-atom structure 

fl dM dc cre(IFl) (IAq~l)P 
1-57 1-0 2"0 0.3271 41"6 
1"57 1"0 1"6 0.2995 38.4 
1-57 1"0 1"28 0"2351 32.3 
4"71 1"0 2"0 0.0191 0.0 
3"93 1-0 1"6 0"0094 18-7 
3"24 1"0 1.28 0.0117 0-0 

aM(IFI) 
0"2761 
0"2205 
0"1713 
0"0142 
0"0118 
0"0118 

46"5 
52"3 
47"3 
24"4 
13"4 
11"8 

Run j 
3 9 
3 17 
4 6 
4 13 
4 28 
4 39 
4 54 

Table 2. Results o f  two runs with the six-atom structure 

fl dM dc crp(F) (IA~I>P 
4-6 1-2 2.0 0.5273 13.9 
2-83 1-2 1-58 1.0176 13-8 
4-6 2.0 2.0 0.2303 0.9 
4.6 1.8 2.0 0.2255 1-0 
4.6 1.6 1-8 0.1788 0-9 
4.6 1-4 1.6 0.1480 1.0 
4.6 1.2 1.4 0.0606 0.3 

a~(F) 
0.4964 
1-0385 

0.3336 
0-4376 
0.2607 
0.1519 

(IA~aI>M 
35"5 
30"0 

20"3 
24"7 
10"7 
11"9 

Run  
5 
5 
5 
5 
6 
6 

J 
7 

20 
32 
48 

6 
22 

Table 3. Results o f  two runs with the 16-atom structure 

fl 
4.0 
4.0 
4.0 
4-0 
4.0 
4.0 

dM dc crp(F) (IAgI>P Re 
2-0 2"0 0-3181 2.3 0"050 
1"8 2"0 0"3415 2.4 0"052 
1.6 1.8 0.2113 3.6 0.033 
1.4 1.6 0-1145 1.4 0.019 
2-0 2.0 1.0470 4.4 0.055 
1.4 1.6 0"9491 5.0 0.055 

a~(F) 

0"7171 
0"5524 
0"2426 

0-264 

42"5 
25"9 
13.0 

16-4 

RM 

0"200 
0"164 
0"090 

0"047 
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and a cubic spline for which the derivative was fitted 
to the Wilson plot at the limit of Fc) were fitted to the 
logarithm. Run 5 was repeated with truncation vari- 
ances estimated by each of these fitted curves in turn. 
The most successful run was that in which a+blh] 2 
was used. This method was therefore adopted for run 6. 

The quantity ½([F~(h)-Ftqa)l)Zu used to estimate 
a,~(h) for run 6 would not be available in practice. 
Hence another run was carried out, with 4a~([F[) 
instead. The factor 4 allowed for anisotropy in the 
probability distribution of F in the M-set. After 19 
cycles, this run was giving results essentially the same 
as those for run 6, but with a,~(lF[)= 0.0099 instead of 
0-0079. We conclude that a good estimate of a20a) is 
desirable, but that the success of the process is not 
critically dependent on its exactness. 

We show in Fig. 1 a composite of electron density 
sections computed from the FoOl) of the P-set of the 
16-atom structure. Fig. 2 shows the same composite 
computed from the output of run 6, using as terms 
F~(h). exp (+2.01h12). This sharpening of the final F~(h) 
does not appear to introduce a significant finite series 
error in addition to the truncation error which we can 
estimate. The excursions from zero in the background 
of the map do not exceed about 1.0 A, -3 while the 
e.s.d, is 0.5 e A -3. 

5. Conclus ions  

There are many variations of conditions which can be 
explored, all of which would affect in some degree the 
success of this method. So far we have established: 

(a) It is necessary to ensure that the truncation error 
is small, and this can be done by ensuring reduction 
of the E values by a Gaussian factor which falls to 0.01 
where the Fc(h) terminate. 

(b) Correct weights are needed to avoid false mini- 
ma. If the main sources of error are allowed for, small 
variations in the method of weight calculation are not 
critical. 

(c) The block-diagonal approximation to the nor- 
mal equations described in § 2 gives reasonably fast 
convergence and avoids the need for large volumes of 
stored information. The algorithm is not impossibly 
expensive, and it is convenient to operate. 

(d) The estimate of error for the electron density 
which we give provides a correct indication of the 
quality of the final map. 

We conclude that this method offers sufficient prom- 
ise of success to be applied to the improvement of 
resolution for structures with large numbers of atoms, 
such as proteins. Work to extend the applicability of 
the program to such structures is in hand. 

Much of the analysis which is discussed in this paper 
is also applicable, with suitable modifications, to the 
method described by Sayre (1972, 1974). 

It is quite probable that the method we describe can 
be used in other contexts than that of enhancing 
resolution for protein structures. It may be of value in 

j 

> - } b - -  

Fig. 1. Composite of electron density sections computed for 
the 16-atom test structure. The terms used are the Fo for 
the P-set only. In most cases individual atoms are not re- 
solved by these data, which have spacings not less than 2-0 A.. 
The contour interval is 1 e A -a 

(3 

D 
' ½b 

Fig. 2. Composite of electron density sections computed for 
the 16-atom test structure. The terms used are the Fc cor- 
responding to the P-set and the M-set, multiplied by 
exp (+2.01hl2). All individual atoms are resolved. The con- 
tour interval is 1 e A_ -a. 
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extending the sets of phases obtained by the application 
of direct methods to smaller structures. It may also be 
possible to enhance the resolution of Patterson series 
by this method more effectively than by simple sharp- 
ening of the data. 
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APPENDIX 
Notation 

Some quantities are not used except near the point in 
the text at which they are defined. They have been 
omitted here. 

Ihl 
E(h) 
Fo(h),~o(h) 
F~(h), ~(h) 

f,(h), ~0t(h) 

e~(h) 

P 

M 

C 

Radius in reciprocal space (=2s in  0/2). 
Normalized structure factor. 
The observed structure factor and its phase. 
The calculated structure factor and its 
phase [calculated by self-convolution of the 
CO~)]. 
The true (exact) structure factor and its 
phase. 
The centroid (in the complex plane) of the 
probability distribution p[Ft(h)lFc(h)]. 
The set of reflexions for which both modu- 
lus and phase of Fo are given. 
The set of reflexions for which only the 
modulus of Fo is given. 
The set of reflexions for which C(h')#0. 

C(h') The (complex) Fourier component of order 
h' in the Fourier series for the square root 
of the electron density. 

~(h') The phase of C(ll'). 
A, (h),Aj_(h) The deviations of F¢(h) from Fo(h) in the 

directions parallel and perpendicular to 
Fo(h), for h in P. 

AMOi ) The deviation of IFc(h)l from IFbfh)l, for h 
in M. 

w,(h),w±(h),wM(h) Weights for A,,(h),Ai(h),AM(h). 
fl The parameter in exp (-fllh[2), by which 

the E values are multiplied to generate Fo. 
p(X) The probability density function for the 

random variable 2(. 
p(XIY) The probability density function for X, 

given the value of the random variable Y. 
aZA(h) The estimated variance (assumed isotropic) 

of the distribution p[F¢(h)lFt(h)]. 
a~(h) The variance in the radial direction of the 

distribution p[Ft(h)lF~(h)]. 
(IAfpI)p, M The mean value of ]~0t(h)- ~0~(h)[ over P,M. 
ap, M(F) The r.m.s, value of IF~(h)-Fc(h)[ over P,M. 
ge, M([F[) The r.m.s, value of IIF,(h)l-IF~fh)ll over 

P,M. 
Re, M The conventional R index evaluated over 

P, M. 
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